
1. Introduction
Coronal Mass Ejections (CMEs- P. Chen, 2011; J. Chen, 2017; Webb & Howard, 2012) are expulsions of plasma 
and magnetic field from the Sun. Their interplanetary counterparts, ICMEs (Kilpua et al., 2017) are among the 
main drivers of the space weather (SWx-Pulkkinen, 2007; Schwenn, 2006) with impact on the whole heliosphere, 
and they are responsible for the strongest variations in the near-Earth solar wind conditions (e.g., Buzuluko-
va, 2017; Schwenn et al., 2005; Tsurutani et al., 1988). These variations trigger a number of effects on space-
borne and ground-based technologies, either directly or via major geomagnetic storms.

The accurate prediction of the arrival and characteristics of ICMEs at Earth, and more recently elsewhere in 
the heliosphere, is a necessity to minimize the impact on the existing and future assets, and has always been a 
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arrival times and arrival velocities using a drag-based model, which is well-suited for this purpose due to its 
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drag-based model, it is still not clear how to best determine distributions for its input parameters, namely 
the drag parameter and the solar wind speed. The aim of this work is to evaluate statistical distributions for 
these model parameters starting from a list of past CME-ICME events. We employ LASCO coronagraph 
observations to measure initial CME position and speed, and in situ data to associate them with an arrival 
date and arrival speed. For each event we ran a statistical procedure to invert the model equations, producing 
parameters distributions as output. Our results indicate that the distributions employed in previous works were 
appropriately selected, even though they were based on restricted samples and heuristic considerations. On the 
other hand, possible refinements to the current method are also identified, such as the dependence of the drag 
parameter distribution on the CME being accelerated or decelerated by the solar wind, which deserve further 
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Plain Language Summary Coronal Mass Ejections (CME), consisting of huge expulsions of 
plasma and magnetic field from the solar corona, are important for space weather. Among several forecasting 
techniques, the drag-based model, which describes CME propagation in interplanetary space, is widely used 
to compute CME transit time and impact speed, by describing the CME propagation as that of a solid body 
moving in an external fluid. In recent years, this model has been improved via a new approach in which 
statistical distributions of the input quantities are introduced to evaluate uncertainties of the resulting forecasts. 
Unfortunately, such distributions for the model parameters are still not very well known from experimental 
observations and it is hard to obtain them from theoretical models. In this work, we built an empirical method 
to evaluate such statistical distributions using a list of past CME-ICME events. New findings emerged from 
this analysis, such as a dependence of the drag parameter on the interplanetary coronal mass ejections being 
accelerated or decelerated, deserve further investigation.
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primary goal of the SWx forecasting (see e.g., Berrilli et al., 2017; Daglis, 2001; Iwai et al., 2019; Schrijver & 
Siscoe, 2010; Veettil et al., 2019). Note that in this work the terms CME and ICME refer to the plasma and mag-
netic field structure expelled from the Sun, without the shock that precedes it.

Forecasting the Time of Arrival (ToA) and Speed of Arrival (SoA) of an ICME more than an hour ahead is nev-
ertheless a complicated task, since it requires to understand the propagation of a poorly determined plasma and 
magnetic field structure into an essentially undetermined interplanetary environment. A recent review (Vourlidas 
et al., 2019) assessed the current state of ICME ToA and SoA forecasting algorithms by surveying the recent liter-
ature. While there is quite a scatter in the results and perhaps a bias correlated to the sample size used, the authors 
report that the most recent forecasting methods have a mean absolute error (MAE) close to 10 hr, which is sim-
ilar in the case of empirical, simplified physics or full MHD models (as ENLIL or EUHFORIA Odstrcil, 2003; 
Pomoell & Poedts,  2018), or machine learning based (see Camporeale,  2019, for a list of such approaches). 
Vourlidas et al. (2019) conclude that a number of factors (physical, observational and modeling) are limiting the 
performances of all approaches, and that the ToA accuracy in particular is limited by the quality of the currently 
available data. These complications arise from the difficulty to evaluate remotely the properties of the CME at 
launch with the present-day instrumentation and from the impossibility to properly characterize the status of the 
inner heliosphere. Therefore, in order for the forecast to be useful, it should cope with this lack of information and 
provide an estimate of its intrinsic uncertainty (Owens et al., 2020). This can be achieved by empirical methods 
through the use of statistical relationships established between past CME measured parameters and ICME char-
acteristics (Gopalswamy et al., 2001; Kilpua et al., 2012), or can be achieved by numerical MHD-based models 
by using ensembles of runs to model the same ICME with different initial conditions that represent the inherent 
uncertainties (Cash et al., 2015; Emmons et al., 2013; Mays et al., 2015).

The main shortcoming of the statistical approach is that it “treats all events the same and neglects the con-
textual information and knowledge that certain situations are inherently more predictable than others” (Owens 
et al., 2020). The other approach (i.e., treat every CME as a different case) has to cope with a relatively large 
parameter space to explore, and the relatively long time needed for the computation of each simulation run (of the 
order of tens of minutes on high-performance systems).

A possible solution is to adopt simplified, kinematic models, for instance, assuming a simplified solar wind prop-
agation, a simple CME geometry, and a hydrodynamic-like ICME-solar wind interaction. Among these models, 
the drag-based model (DBM-Cargill, 2004; Vršnak et al., 2013), is among the most used and it can be run in large 
ensembles during a few seconds in an average laptop (Amerstorfer et al., 2018; Dumbović et al., 2018; Kay & 
Gopalswamy, 2018; Napoletano et al., 2018). The DBM requires CME properties as input: the CME launch time, 
initial speed, direction and angular width.

To model the interaction of the ICME with the background solar wind the DBM needs only the solar wind speed 
and the value of the drag parameter γ, which determines the interaction between the solar wind and the CME. The 
quantities used to describe the CME are retrieved from observations that have associated measurement errors. 
They can be used in ensemble models assuming Gaussian probability distribution functions (PDFs). The solar 
wind speed and the drag parameter are instead drawn from a-priori PDFs, modeled from empirical PDFs built 
from past data sets of CME and associated ICME characteristics measured at liftoff and at Lagrange point L1, 
respectively. The outputs of the DBM ensemble model are the PDFs of ToA and SoA at a target location. From 
these, we can estimate the most probable ToA and SoA, and their associated prediction uncertainties (e.g., Del 
Moro et al., 2019; Piersanti et al., 2020).

In recent years there has been several interesting development of DBM based tools to forecast ICME arrival time 
and speed. When compared against other forecasting methods as in (Vourlidas et al., 2019), their performance is 
comparable and sometimes even better than MHD based methods (Vršnak et al., 2014). Augmenting the results 
presented in Table 1 of (Vourlidas et al., 2019) with Table 2 of (Dumbovic et al., 2021), we can estimate that the 
typical MAE of the DBM methods is of the order of 10 hr and the typical error on the SoA is around 50 km/s. 
It deserves to be stressed that the performance of each model has been computed on a different ICME data set, 
thus limiting the value of this comparison. A community effort to create a common benchmark is underway (e.g., 
Verbeke et al., 2019), but it is not yet a widespread standard.

Recently, Kay et  al.  (2020) used the DBM ensemble approach to answer an implicit question in Vourlidas 
et al. (2019): “How much should we improve our knowledge of the parameters to improve the ToA predictions 
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beyond the present limit MAE of about 10 hr”? Their conclusion is that the most critical parameter is the CME 
speed at liftoff, and efforts should be spent to achieve a better and more homogeneous determination of the CME 
speed via coronagraphics imaging or other means. Kay et al.  (2020) also explored the sensitivity of the ToA 
versus the γ parameter, following Dumbović et al.  (2018), who postulated a symmetric distribution of values 
(γ = 0.1 ± 0.05 × 10−7 km−1). However, Napoletano et al. (2018) (hereafter Paper I) built an empirical γ PDF 
which is asymmetrical and not compatible with a Gaussian shape. Since the γ parameter incorporates much of the 
physics of the ICME-wind interaction and its precise value is poorly understood (Kay et al., 2020), we think it 
deserves further investigation. In particular, the empirical γ PDF in Paper I has been built from a limited database 
of ICME, therefore it is the quantity that most of all needs a more robust definition. A better assessment of the 
values of γ may be obtained, in principle, with detailed knowledge of the ICME kinematics. In order to evaluate 
the DBM input parameters, (Žic et al., 2015) proposed to employ a least squares fitting procedure to the ICME 
interplanetary tracking derived from STEREO coronagraphic and heliospheric image observations. In addition, 
(Rollett et  al., 2016) also developed such an approach and employed an improved model for the geometrical 
shape of the CME front, showing that the extrapolation of the CME dynamics based on real-time tracking can 
further reduce the mean error of the predicted arrival time to 6.4 ± 5.3 hr and impact speed to 16 ± 53 km/s. 
Although promising, such an approach is currently not feasible for real-time forecasting, as it requires a dedicated 
heliospheric observatory for real-time ICME tracking. Therefore model parameters have to be constrained by two 
single observations (at liftoff and Earth), and a better assessment of these parameters depends on the availability 
of more data and an improved database. The aim of this paper is to use a large number of ICMEs to build a new 
empirical PDF for the model parameters and to find a suitable functional form to model it.

The paper is structured as follows. In Section 2 we describe the data and the methods employed to build the 
ICME database used to obtain the new γ PDF. Section 3 contains the technical description of the methods used 
to retrieve the γ PDF. Section 4 contains the actual results and a validation of those results against the ICME 
list from Paouris and Mavromichalaki (2017a). In Section 5 we discuss the results and provide a synopsis of the 
findings of this paper. The ICME catalog built for this analysis, together with a tool for the data set visualization 
and the software employed for the ensemble simulation through the probabilistic drag based model, is available 
from https://doi.org/10.5281/zenodo.5818470 (Napoletano et al., 2021).

2. Data
As mentioned above, the DBM needs input values to output a ToA and a SoA at a target location. For the purpose 
of this work, we compare observed ToA and SoA at Earth (or L1) position against those computed by the proba-
bilistic drag-based model (PDBM) presented in Paper I. We therefore need a database associating Earth ToA and 
SoA of an ICME to the kinematic characteristics of the corresponding CME. In particular, we need measures of 
the position r0 and the speed v0 at time t0 of the CME front, and the solar wind speed (see A3 in Appendix A).

Also, to obtain a homogeneous database for a consistent approach, we re-computed some of the CME kinematics 
properties (CME leading edge initial initial speed and acceleration) with a standardized method. Last, to have 
an assessment of the method as close as possible to the actual operation performances, we made use of the same 
methods and algorithms presently implemented in the real-time ICME ToA forecast running at http://spaceweath-
er.roma2.infn.it. These selection criteria and methods are described in the following sub-sections.

2.1. Sources for Compiling the Employed ICMEs Database

Our analysis uses a database connecting the kinematic parameters of the CME at launch time and the information 
about the arrival time and speed of the related ICME. The databases already available are not suited for our anal-
ysis, but we can merge and complement the information from three different sources available online to create a 
new database for this purpose.

We start from the list of near-Earth interplanetary coronal mass ejections (ICMEs) compiled by Richardson and 
Cane  (2010), hereafter R&C, 2010, who maintain the catalog using data from the OMNI database (Goddard 
Space Flight Center, GSFC, http://spdf.gsfc.nasa.gov/). From about 500 events from May 1996 to present in this 
catalog, we consider only those events that have information about the CME liftoff time, selecting 247 events. 
This onset time (see http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm for specifications) refers 

https://doi.org/10.5281/zenodo.5818470
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to the most-likely association between the ICME and the corresponding CME observed by LASCO coronagraphs 
(C2 and C3) aboard SOHO spacecraft (in a few cases, STEREO spacecraft observations are used).

We make use also of information about the CME liftoff retrieved from the SOHO LASCO CME catalog (https://
cdaw.gsfc.nasa.gov/CME_list/) maintained at the CDAW Data Center. Lastly, information about features and 
events on the Sun that may be associated to the CME, such as Filaments, Flares, Active Regions, and Cor-
onal Holes are retrieved from the Heliophysics Event Knowledgebase (HEK; Hurlburt et  al.,  2010; Martens 
et al., 2012): a queryable repository of feature and event information about the Sun.

2.2. Database Creation

We associate each of the remaining 247 ICME in the R&C list with an entry in the CDAW SOHO/LASCO CME 
catalog having the same onset times, 𝐴𝐴 𝐴𝐴0R&C

= 𝐴𝐴0LASCO
 , by using a dedicated Python routine. The SOHO/LASCO 

catalog provides various kinematic properties associated to the onset time 𝐴𝐴 𝐴𝐴0LASCO
 of the CMEs (i.e., position 

angle, angular width, Mass, see Table 1). Among those properties, there is also an estimate for the CME lift-off 
speed, but unfortunately, it is relative to the fastest part of the CME front and has no associated error. Therefore, 

Name Keyword Description Source

1 LASCO start LASCO_Start First CME appearance in LASCO C2/C3 coronographs LASCO/CDAW

2 Start date Start_Date Start time of CME extrapolated at 20 R⊙ This work

3 Arrival date Arrival_Date Estimated arrival time of the ICME based primarily on plasma and magnetic field 
observations

R&C

4 Plasma event dur. PE_duration End of the ICME plasma signatures after col. 3 is recorded R&C

5 Arrival speed Arrival_v (km/s) ICME arrival speed measured at L1 (∼1AU) R&C

6 Transit time Transit_time (hrs.) Computed between col. 3 and col. 1 This work

7 Trans. time error Transit_time_err (hrs.) Error associated to the extrapolated start date (col. 3) of a CME This work

8 LASCO date LASCO_Date Most likely CME associated with the ICME observed by LASCO LASCO/CDAW

9 LASCO speed LASCO_v (km/s) Max. plane-of-sky (POS) CME speed along the angular width LASCO/CDAW

10 Position angle LASCO_pa (deg.) Counterclockwise (from solar North) angle of appearance into coronographs LASCO/CDAW

11 Angular width LASCO_da (deg.) Angular expansion of CME into coronographs LASCO/CDAW

12 Halo LASCO_halo If col. 15 is >270° then ’FH’ (full halo), if >180° ’HH’ (half halo), if >90° ’PH’ 
(partial halo), otherwise ’N’.

LASCO/CDAW

13 De-proj. speed v_r (km/s) De-projected CME speed (from 9, see Appendix A1) This work

14 De-proj. speed error v_r_err (km/s) Uncertainty of CME initial speed (col. 13) This work

15 Theta source Theta (arcsec) Longitude of the most likely source of CME This work

16 Phi source Phi (arcsec) Co-latitude of the most likely source of CME This work

17 Source pos. error POS_source_err (deg.) Uncertainty of the most likely CME source This work

18 POS source angle POS_source (deg.) Principal angle of the most likely CME source This work

19 Relative width rel_wid (rad.) De-projected width of CME This work

20 Mass Mass (g) Estimated CME Mass (if provided) LASCO/CDAW

21 Solar wind type SW_type Solar wind (slow, S, or fast, F) interacting with the ICME This work

22 Bz Bz (nT) z-component of magnetic field at L1 and CME arrival time (col. 3) R&C

23 Dst DST Geomagnetic Dst index recorded at CME arrival (col. 3) R&C

24 Stat. de-proj. speed v_r_stat (km/s) Statistical de-projected CME speed, that is, v_r_stat = LASCO_v*1.027 + 41.5 (Paouris & 
Mavromichalaki, 2017b)

25 Acceleration Accel (m/s2) Residual acceleration at last CME observation This work

26 Analytic sol. wind Analytic_w (km/s) solar wind from DBM exact inversion This work

27 Analytic gamma Analytic_gamma (km−1) drag parameter, γ, from DBM exact inversion This work

Table 1 
Column Description of the ICMEs Data Set Created in This Work

https://cdaw.gsfc.nasa.gov/CME_list/
https://cdaw.gsfc.nasa.gov/CME_list/
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it can not be employed to define a PDF and is not suitable for our purposes. Nevertheless, with this association, 
we can retrieve from the SOHO/LASCO website the original height versus time measurements of the CME 
front (in solar radii units, RSun), computed from LASCO C2/C3 coronagraph images. These values represent the 
position of the CME front on the plane-of-sky (hereafter POS), and need to be de-projected to obtain the true 
radial distance and speed of the CME. The equation to de-project the position 𝐴𝐴 𝐴𝐴0POS

 into r0 is from (Gopalswamy 
et al., 2010). It implies a model for the CME shape (i.e., the CME front expansion is considered completely radial, 
as in Model A of Figure 9 in Schwenn et al., 2005) and requires the CME angular width and the location of the 
CME source on the solar disk.

The details about the algorithms to associate a CME to its source on the solar disk and to compute its de-projected 
speed at r0 = 20RSun and the associated error are described in Appendix A.

An interesting new geometrical technique for de-projecting the CME speed has been very recently published 
(Paouris, Vourlidas, et al., 2021). We foresee the possibility to utilize such a method in a future work. After these 
procedures our data set was reduced to 214 CME-ICME pairs. In Figure 1 we report the histogram of the yearly 
number of CME comprising this data set, since it spans about two solar cycles (23 and 24). As it is known (e.g., 
Lamy et al., 2019; Webb & Howard, 2012), the number of CMEs depends on the solar cycle phase and the total 
number of CMEs per cycle is clearly different for the cycle 23 and 24. In Figure 2 we show a summary of some 
quantities reported in Table 1, and in particular we focus on those variables that will be used for the inversion 
procedure (see Section 3.2).

3. Methods
3.1. The Drag-Based Model

We employ the drag-based model (DBM; Cargill, 2004; Vršnak et al., 2013) to forecast arrival time and impact 
speed of a CME at Earth. This model assumes that, from a certain distance from the Sun, the CME dynamics 
is governed only by its interaction with the ambient solar wind. By employing a fluid dynamic analogy, it is as-
sumed that the force depends on the square of the relative velocity of the CME to the ambient solar wind flow, so 
that the equation for the CME radial acceleration reads:

𝑎𝑎 = −𝛾𝛾(𝑟𝑟) [𝑣𝑣 −𝑤𝑤(𝑟𝑟)] |𝑣𝑣 −𝑤𝑤(𝑟𝑟)| (1)

where γ(r) is the so-called drag parameter, representing the interaction efficiency between the CME and the solar 
wind, w(r) is the solar wind speed, and r is the distance from the Sun. A reasonable approximation beyond 20 so-
lar radii is that of constant γ and w throughout the whole ICME propagation (Cargill, 2004; Vršnak et al., 2013). 
We point out that this is a relevant assumption, as in reality the ambient solar wind speed and the mechanisms of 
interaction between the solar wind and the CME structure are not constant. We refer the reader for example, to 
(Temmer et al., 2012), (Rollett et al., 2014), (Žic et al., 2015) for studies investigating CMEs evolving in different 
drag regimes and variable solar wind speed, or (Piersanti et al., 2020) for an example of the probabilistic approach 

Figure 1. Distribution of the selected interplanetary coronal mass ejections (ICMEs) in our data set during the past 20 years. 
The orange line represents the average Speed of Arrival of ICMEs for each year, the error bar represents the relative standard 
deviation.
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to the drag-based model applied with a variable solar wind. Under such assumptions, Equation 1 can be solved 
analytically (Vršnak et al., 2013) for the heliospheric distance and the ICME speed as a functions of time:

𝑟𝑟(𝑡𝑡) = ±
1

𝛾𝛾
ln [1 ± 𝛾𝛾(𝑣𝑣0 −𝑤𝑤)𝑡𝑡] +𝑤𝑤𝑡𝑡 + 𝑟𝑟0, (2)

𝑣𝑣(𝑡𝑡) =
𝑣𝑣0 −𝑤𝑤

1 ± 𝛾𝛾(𝑣𝑣0 −𝑤𝑤)𝑡𝑡
+𝑤𝑤𝑤 (3)

where the choice between ± depends on the sign of v0 − w: the + sign is taken for accelerated CMEs (v0 − w < 0), 
while the - sign holds for decelerated ones (v0 − w > 0). Given the initial conditions r0, v0 and model parameters 
γ and w, these equations can be employed to compute the ToA and the SoA at a target located at a chosen helio-
centric distance.

3.2. The Inversion Procedure

The DBM Equations 2 and 3 can be used to forecast the travel time T and the impact speed v1 of an ICME at a 
given position r1. Conversely, if T and v1 are known, these equations can be inverted leaving γ and w as unknown 
values, as in (Vršnak et al., 2013):

𝑟𝑟1 = 𝑟𝑟0 +𝑤𝑤𝑤𝑤 +
(𝑣𝑣0 −𝑤𝑤)(𝑣𝑣1 −𝑤𝑤) 𝑤𝑤

(𝑣𝑣0 − 𝑣𝑣1)
ln

[

1 +

(
𝑣𝑣0 − 𝑣𝑣1

𝑣𝑣1 −𝑤𝑤

)]

 (4)

Figure 2. (From left to right) Probability distribution of the interplanetary coronal mass ejections (ICME) Time of Arrival, Speed of Arrival, linear plane-of-sky liftoff 
speed and de-projected liftoff speed obtained with from whole ICME data set. In every panel, the vertical dashed line (black) is the average value, also reported within 
each panel.
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±𝛾𝛾 =
(𝑣𝑣0 − 𝑣𝑣1)

(𝑣𝑣1 −𝑤𝑤)(𝑣𝑣0 −𝑤𝑤)𝑇𝑇
 (5)

the first equation is implicit in w, but can be solved numerically and its solution is then employed to compute γ 
through the second one. Therefore, for a given T, v0, v1, we have γ = f(w). This dependence can be seen in the joint 
PDFs presented below, where for each CME there is a ridge of joint w, γ values.

In principle, using the entries of the database presented in Section 2, we could compute the γ and w values for 
every ICME and add them to the database. In practice, due to the intrinsic errors of the r0, r1, v0, v1 and T param-
eters, or due to the fact that sometimes the DBM model simply does not accurately represent the ICME motion 
(e.g., in the case when w = constant is not a viable approximation) Equations 4 and 5 have no solution for 75 
out of the 214 events of our database. We therefore used an inversion method that takes into consideration the 
experimental uncertainty of the input quantities during the inversion procedure. The two parameters r0 and r1 
have no associated errors, since we set them at 20 and 215 solar radii, respectively. For v0, v1 and T, we modeled 
the PDFs with normal distributions centered at the relative measured or estimated values and with standard devi-
ations corresponding to their uncertainties. For v0, the mean is defined by the CME de-projected speed, and the 
standard deviation σ by its associated error, rows 13 and 14 in Table 1 respectively. For v1, the mean is defined by 
the ICME measured arrival speed (row 5 in Table 1), and σ by an assumed measurement error of 10%. For T, the 
mean is defined by the difference between the measured arrival time at Earth and the estimated passage at 20RSun 
row 6 in Table 1, and σ by considering the error on the liftoff time obtained by the de-projection procedure (row 
7 in Table 1).

From the average values and their PDFs, the inversion method generates N random samples of [r0, r1, v0, v1, T] 
per ICME and feeds those to Equations 4 and 5. We run this inversion procedure with N = 5,000 for each of the 
214 events in the ICME database. In about 50% of all the generated cases the solutions γ and w do not exist due 
to incompatibility of the randomly generated input values, that is, such values do not allow for a solution of the 
implicit Equation 4.

Also, we take into consideration for the following analysis only those solutions where 10−8 km−1 < γ < 10−6 km−1. 
We choose this range of magnitudes considering Equation 2 of Vršnak et al. (2013) and following the same order 
of magnitude reasoning therein, which poses a limit on the realistic values of γ.

4. Results
4.1. Inversion Method Results

The inversion procedure was successful for 210 out of 214 events, thus providing a statistical distribution for the 
solar wind w and drag parameter γ. The whole sample consists of 519,857 inversions. In the upper-left panel of 
Figure 3, we show the joint distribution γ – w. As already stated in Par. 3.2, in the joint distribution we can still 
identify a few w–γ ridges generated by single CMEs, but the plane is populated enough to extract the properties 
of these PDFs and compare them with the PDFs used in Paper I. Also, as a consequence of the random extraction 
of the initial speed and solar wind, we can draw two more joint PDFs, separating the accelerated Δv = v0–w < 0 
(18,416 extractions) and decelerated Δv > 0 (501,441 extractions) ICMEs. These two joint PDFs γ − Δv are 
shown respectively in the central-left and lower-left panels of Figure 3.

4.2. PDFs for the Solar Wind Speed and Drag Parameter

From the joint distributions shown in Figure 3, we can extract the marginal distributions for the drag-parameter, 
γ. We compare this empirical PDF with the reference lognormal function used in Paper I to model the γ PDF. The 
plot in the upper panel of Figure 3 shows that the histogram retrieved from the whole data set has a shape which is 
not compatible with the reference PDF (in blue). The fit of the histogram with a lognormal function (red dashed) 
retrieves μ = −0.83 and σ = 1.26, against the μ = −0.70 and σ = 1.01 of the reference PDF. It is worth to note 
that we tried fitting to the PDFs other function types, in particular exponentials, power laws, and truncated power 
laws, but none of those retrieved a better fit than the lognormal.

As above, we can divide our data set in accelerated and decelerated ICMEs (central left and lower left panels 
of Figure 3). The two histograms look quite different and are fitted by lognormal functions (red dashed) with 
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Figure 3. Probability distribution functions (PDFs) for γ (left column) and the joint distributions (right column) obtained from inversion procedure using the 
interplanetary coronal mass ejections (ICMEs) in the database as input. Upper panel: γ versus w for the whole data set (519,857 values). Middle panel: γ versus Δv 
for the accelerated ICMEs (18,416 values). Lower panel: γ versus Δv for the decelerated ICMEs (501,441 values). All the PDFs were fitted with a lognormal function 
(red dashed). The lognormal function (blue line) used in Paper I is also plotted for comparison. In each panel, the inset shows the same plot on a log-log scale for an 
extended range.
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significantly different parameters. In particular, from the fit to the histogram 
from the decelerated ICMEs, we retrieve μ = −0.85 and σ = 1.25. Since this 
histogram contains more than 98% of the total samples, its parameters are 
close to those obtained from the whole data set, but also more compatible 
with the values of Paper I.

From the fit to the histogram from the accelerated ICMEs, we retrieve 
μ = 0.40 and σ = 1.18. The accelerated CMEs are represented by a lognormal 
distribution with a significantly higher mean value.

From these results, we define new γ parameter distributions functions for 
accelerated and decelerated cases. Similarly, we can extract the partial dis-
tribution of the solar wind values obtained by all the inversion procedures 
black line in Figure 4. We fitted this distribution with the sum of two Gauss-
ian functions (blue and red lines), whose parameters are reported in Table 2. 
It is straightforward to interpret these two Gaussian functions in terms of 
slow and fastsolar wind. We therefore redefine the parameters to generate the 
PDFs for the solar wind employed in Paper I with the new values reported 
in Table 2.

4.3. Testing PDBM Performance With Updated Gamma and Solar 
Wind Speed Distributions

In order to test the new solar wind and drag parameter distributions and com-
pare the performance of the PDBM related to old distributions (Paper I) our 

ICMEs list was used to compare the predictions with the observed values. The algorithm maps a large sample 
of initial conditions to the corresponding transit time and arrival speed through the DBM Equations 2 and 3, 
allowing, in addition, to asses the forecast uncertainty from the output distributions. For each event, we start 
by randomly extracting an initial speed v0 and a value for the solar wind speed w from their respective normal 
distributions. If v0 < w (v0 > w) the event is an accelerating (decelerating) CME, and a value for the drag param-
eter γ is randomly generated from the corresponding log-normal distribution from Section 4.2. Computed CME 
transit time Tc and impact speed at 1AU vC are then obtained through the DBM equations with this set of initial 
conditions and parameters. For each event, a statistical distribution for ToA and SoA results from repeating this 
procedure a large number of times. The mean values 〈Tc〉 and 〈vc〉 of such distributions, together with their stand-
ards deviations are taken as representative of the forecast for each event.

Figure 5 shows the histograms of the difference between transit time and arrival speed comparing the old PDBM 
and the new one on this set of events. Relevant performance indicators are collected in Table 3. Figure 6 shows 
the plots of the PDBM prediction versus the observed values of the ICME transit time and impact speed. For 74% 
of events, the observed ToA falls within the standard deviation of the predicted one, and for the arrival speed this 
occurs for 90% of the events. This may be an indication of a possible overestimation of the error on the forecasted 
ToA, related to the errors on the input velocities.

4.4. Validation Against a Subset of Paouris' ICME Database

To test the validity of the new PDBM distributions on a list of past ICME 
events which is independent from the one described in Section 2, we em-
ployed a list of 100 events from the (Paouris & Mavromichalaki, 2017a) list, 
obtained after excluding 92 common ICMEs between the two databases. 
Figure  7 shows the histograms of the difference between transit time and 
arrival speed comparing the old PDBM and the new one on this set of events. 
Relevant performance indicators are collected in Table 4. Figure 8 shows the 
plots of the PDBM prediction versus the observed values of the ICME transit 

Figure 4. The probability distribution function (PDF) of the solar wind speed 
from the whole data set. The PDF was fitted with the sum of two Gaussian 
functions (green line), which can be interpreted as the slow solar wind (blue 
dashed line) and fast solar wind (red dashed line) contribution to the whole 
PDF(w). As a reference, we also plot the SW PDF used in Paper I (black 
dashed line).

A𝐴𝐴 𝑤𝑤 [km/s] σw [km/s]

Blue Gaussian function 3.6 ⋅ 10−3 370 80 slow solar wind

Red Gaussian function 1.0 ⋅ 10−3 490 100 fast solar wind

Table 2 
Parameters for the Two Gaussian Functions Used to Model the Solar Wind 
Distribution
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time and impact speed. For 65% of events, the observed ToA falls within the standard deviation of the predicted 
one, while for the arrival speed this occurs for 78% of the events.

5. Discussion and Conclusions
We compiled a list of CME-ICME pairs with a reliable association between their remote observations and in situ 
signatures. To evaluate the CME initial speed and launch time, we applied a polynomial fit procedure to corona-
graph data. We then employed an algorithm to establish the most suitable type of solar wind accompanying the 
CME. We built this database by using the automated methods for CME characterization that are used for a CME 
detection and forecast service. Therefore, the uncertainties reported in the database should be representative of 
the errors in real-time use.

We employed this database to retrieve the parameters γ and w in the DBM equations. In this procedure, we 
took into account the uncertainty on the observations, mapping the input PDFs into the PDFs for the model 

Figure 5. Histograms of the differences between computed and observed values for the interplanetary coronal mass ejections (ICME) travel time (left) and arrival 
speed (right), computed using our ICME list. Such predicted values are computed both with the old solar wind and drag parameter distributions from Paper I and the 
new ones.

PDBM from paper I New PDBM

ME of arrival time prediction 〈ΔT〉 [h] −1.7 ± 21.3 1.1 ± 20.6

MAE of arrival time prediction 〈|ΔT|〉 [h] 16.4 15.9

RMSE of arrival time prediction RMSE(T)[h] 21.3 20.4

ME of arrival speed prediction 〈Δv1〉 [km/s] 14.2 ± 105.7 20.3 ± 103.7

MAE of arrival speed prediction 〈|Δv1|〉 [km/s] 79.1 78.0

RMSE of arrival speed prediction RMSE(v1)[km/s] 106.4 111.7

Table 3 
Performance Indicators for the Application of the PDBM Model From Paper I and With the Updated PDFs to the Database 
Presented in This Work
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Figure 6. Plots of the computed mean Time of Arrival (ToA) versus the observed ToA (left) and of the computed mean Speed of Arrival (SoA) versus the observed 
SoA (right), obtained after applying the new PDBM distributions on our data set. Black line represents the perfect forecast. Due to the density of data points, vertical 
error bars have been omitted for sake of visualization, and the median error bar has been represented in the bottom right corner.

Figure 7. Histograms of the differences between computed and observed values for the interplanetary coronal mass ejection travel time (left) and arrival speed (right), 
computed on on the subset of events from (Paouris & Mavromichalaki, 2017a) list. Such predicted values are computed both with the old solar wind and drag parameter 
distributions from Paper I and the new ones.
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parameters. The robust statistics, granted both by the larger ICME database with altogether 214 ICMEs and the 
Monte-Carlo-like inversion method, produced a joint PDF populated enough to allow us to verify the PDFs pro-
posed in (Napoletano et al., 2018).

The empirical solar wind w PDF has been modeled using the sum of two Gaussian functions, and given their 
parameters we interpreted these as representative of the slow and fast solar wind distributions.

Similarly, we verified that a Lognormal function fit is a suitable function for fitting the empirical PDF for the drag 
parameter γ. Although the Lognormal is a long-tailed function, we can define the average value 𝐴𝐴 𝛾𝛾 = 1. × 10−7 km−1.  
Also, the fit parameters appear to be quite close to those of Paper I. It is worth to note here that the Drag Based 
Ensemble Model (DBEM) implementation by Dumbović et al. (2018) uses as γ PDF a Gaussian function with 
μ = 1. × 10−8 km−1 and σ = 0.5 × 10−8 km−1, that is 10 times smaller than the value we found. Similarly to the 
present study, in a more recent paper (Calogovic et al., 2021), they applied a reverse modeling procedure with 
the DBEM aimed to find optimal values for the DBM parameters. Their results showed that for the drag param-
eter a higher median value of about three times larger (γ = 0.32 × 10−7 km−1) and an extended range of values 
(σ = 0.7 × 10−8 km−1) are needed than the one used in the previous version of the DBEM, for lower MAE and ME 
in predictions. Interestingly, in the study of (Rollett et al., 2016), over the list of 21 ICME tracked by heliospheric 
imager, the average value of the fitted drag parameter is also generally larger than that of the previous models 
(≈0.4 × 10−7 km−1, even excluding 4 cases which yielded unrealistic too-high values for γ), still following the 

PDBM from paper I New PDBM

ME of arrival time prediction 〈ΔT〉 [h] −3.0 ± 19.9 −0.2 ± 19.5

MAE of arrival time prediction 〈|ΔT|〉 [h] 16.8 16.3

RMSE of arrival time prediction RMSE(T) [h] 14.4 15.5

ME of arrival speed prediction 〈Δv1〉 [km/s] 24.4 ± 97.0 30.0 ± 102.4

MAE of arrival speed prediction 〈|Δv1|〉 [km/s] 84.1 88.8

RMSE of arrival speed prediction RMSE(v1)[km/s] 71.9 80.4

Table 4 
Performance Indicators for the Application of the PDBM Model From Paper I and With the Updated Probability 
Distribution Functions to the Database by (Paouris & Mavromichalaki, 2017a)

Figure 8. Plots of the computed mean Time of Arrival (ToA) versus the observed ToA (left) and of the computed mean Speed of Arrival (SoA) versus the observed 
SoA (right), obtained after applying the new PDBM distributions on the subset of events from (Paouris & Mavromichalaki, 2017a) list.
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same trend. Furthermore, a recent paper by (Paouris, Čalogović, et al., 2021) found that the DBEM needs a larger 
value between 2.1 and 4.8 times larger of the drag parameter to model a set of CMEs. The large statistics of the 
inverted DBM parameters, allowed us also to try and separate the PDFs for those CMEs which are accelerated 
or decelerated by the solar wind. Although the statistics for the accelerated CMEs is much reduced, we found 
evidence that the γ PDFs are significantly different. In particular, the accelerated CMEs seem to experience, on 
average, a larger value of γ and to equalize more rapidly their speed to that of the solar wind.

We therefore introduce refinement of the PDBM with respect to that presented in Paper I, using different γ PDFs 
in case of accelerated or decelerated ICME. It is worth explaining why we chose to look for this separation. As 
the drag-based model describes the CME propagation taking as a reference the motion of a solid body in a fluid 
stream, a different value for the drag parameter may be expected if such body does not present the same shape 
to a fluid coming from the rear (accelerating CME) and to a fluid coming from the front (decelerated CME). We 
suggest that this may be the case, as ICMEs are typically depicted as curved flux tube, and our finding that the 
accelerated CMEs experience a higher drag than the decelerated ones is in accordance with such picture, where 
we expect a higher drag due to the fluid piling up in the rear of accelerating ICMEs, and a lower drag for decel-
erating ones, which undergo a smoother solar wind flow on their edges. Interestingly, some results from (Vrsnak, 
B. et al., 2008) may lead to similar conclusions. In this work, they investigated several relationships between the 
CME dynamics and the CME mass and found a correlation between the latter and the initial speed, concluding 
that since slower CMEs tend to have lower mass, larger values of γ are expected, as the drag parameter is related 
to the inverse of the CME mass (refer to equations in Vršnak et al. (2013)).

The updated method shows an improvement on predicted ToA average, both in the test against the initial database 
(Section 4.3) and in the validation against Paouris' CME list (Section 4.4), although the performances obtained 
with the old and new PDBM implementations are comparable and well within the error bars.

It is worth to note that the performance of our model is in agreement with the results from the investigation of 
(Vourlidas et al., 2019), which investigated the relation between the size of the database and the ToA MAE for 
several forecasting methods. Apparently, ToA MAE in the range 10–15 hr is the current limit on the performance 
obtained by almost all the methods for ICME forecasting, including numerical models. Our interpretation is that 
this limit is set by both the lack of knowledge about the actual state of the interplanetary medium and the large 
uncertainties on the CME initial properties.

This triggers two considerations. First, as long as the input data has such large errors, there will be probably little 
gain in tuning the model performance without taking into consideration those input errors. This, of course, affects 
also the new PDBM implementation we are proposing in this work. Second, it is important to test/validate the 
forecast procedures (especially those suited for real-time implementation) using a standard database of CMEs, in 
order to allow the comparison of the performance of models under the very same conditions. To this purpose, we 
think that data sets such as that presented in this work and that in (Paouris & Mavromichalaki, 2017a) will be of 
benefit to the CME modeling community when comparing the performances of different models and methods.

Lastly, it is worth to stress that the joint PDFs in Figure 3 show a non-linear correlation between γ and w: while 
we did not make use of this information in our work, the use of a joint PDF for the parameter extraction would 
reduce the parameter space by one degree of freedom. This approach definitely deserves further investigation, 
and it will be treated in future work.

Appendix A: Further Details on Methods
Within the Appendix we provide more information about the methods employed to build the CME database.

A1. Identifying the CME Source on the Solar Disk

To find the most probable CME source on the Sun, we employed a source finding algorithm that makes use of 
HEK (Heliophysics Event Knowledgebase-Hurlburt et al., 2010) to query which solar features (Active Regions, 
Solar Flares, Filaments Eruptions) that may have been the source of the CME, are within an area A and a time 
span Δt compatible with the CME launch parameters. The time span Δt is defined by an estimate of the time and 
duration of the CME liftoff obtained from LASCO images. The search area A is the whole solar sector defined 
by the CME POS angle and the angular width W of the CME if W < 180° (normal and partial halo CMEs). In 
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the case 180° ≤ W < 270° (half halo CME), the same sector is limited to 800” from the disk center. In the case 
W ≥ 270° (full halo CME), A is the central part of the solar disk, within 600” from the disk center. In the case 
multiple possible sources are retrieved by the query, the position of the CME source is the weighted average of 
the retrieved feature positions, with active regions weighting the larger between 0.1 and their associated R values 
(Schrijver, 2007), flares weighting 25 and filament ejections weighting 500. In those cases where no potential 
feature is retrieved by the query, the default source position is computed as the intersection between the CME 
POS angle vector and a circle centered on the disk center, with radius R*, where 𝐴𝐴 𝐴𝐴

∗ =
1

3
𝐴𝐴sun in case of a full halo 

CME, 𝐴𝐴 𝐴𝐴
∗ =

1

2
𝐴𝐴sun in case of a half halo CME, 𝐴𝐴 𝐴𝐴

∗ =
2

3
𝐴𝐴sun in case of a partial halo CME, R* = Rsun in case the 

CME width is smaller than 90°. To the CME foot-point position we associate an error given by the larger between 
five” and the standard deviation of the weighted averaging described above. We employed this method and these 
weighting values since they are those in use in the real-time CME detection and propagation services SWERTO 
(Berrilli et al., 2017) and IPS (Veettil et al., 2019) and have been set after an extensive test on a number of known 
CME-ICME counterparts.

A2. De-Projecting the CME Propagation Vector

After the identification of CME most likely source region,it is necessary to compute the radial speed vr from 
the measured POS speed of the CME front. The procedure is based on Equation 1 in Gopalswamy et al. (2010), 
assuming a cone model for the CME shape (see Figure 1 in the same reference). The main difference is that we 
use the de-projection coefficient to obtain the de-projected position Rr from the POS position of the CME front, 

Figure A1. Illustration of the fitting procedure used on the Coronal Mass Ejections (CME) height versus time data. The two rows show examples for CME n.13 and 
n.179 from the data set. Left column: the original and deprojected data, with the shaded area indicating deprojection uncertainties. Two types of quadratic fits are 
shown: using all the data points (used for our database for robustness) and using only part of the data. Middle column: CME speed as determined from the fits and as 
sampled from the deprojected data. Right column: CME speed versus CME height, as determined from both types of fits. At 20 solar radii, they usually agree quite 
well.
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instead of directly de-projecting the speed. By using such equation we can also compute the error associated to 
the radial position dRr.

Once we have the data to plot a time-distance relation in the de-projected framework, we can obtain the radial 
speed by doing a linear or quadratic fit of the r(t) relationship described by these data. The standard option is to 
fit a quadratic relationship, but when the number of measured position of the CME available for the fit is less 
than 9, a linear fit is used. Examples of quadratic fits are presented in Figure A1. Note that with a quadratic fit, 
the CME's acceleration is assumed to be constant and its speed is assumed to be a linear function. Because of this 
approximation, different velocities can be obtained depending on which part of the r(t) data is used for the fit, as 
illustrated in the figure. In this paper, we have for robustness always used all available data points.

With the parameters from the fit, we are able to compute several quantities of interest for the CME liftoff. Name-
ly, the time when the CME front reaches the 20RSun distance and its associated error; the CME vr (@20RSun) and 
associated error; the possible CME front residual acceleration at 20RSun distance. Those values make part of the 
CME liftoff characteristics in the database: start date, de-projected speed, de-projected speed error, acceleration. 
Since the error on the arrival date is negligible, the error on the Start Date is reported as transit time error.

A3. Associating a Solar Wind Speed to Each CME

In order to propagate the ICME with an appropriate solar wind speed, for each event we have to hypothesize if the 
ICME interacted with a stream of slow (S) or fast (F) solar wind. It is well known that coronal holes are sources 
of fast solar wind streams (Krieger et al., 1973; Nolte et al., 1976), therefore we implemented an algorithm which 
discriminates the solar wind type by verifying if the CME source region is close to a coronal hole. A suitable 
algorithm queries the HEK (Heliophysics Event Knowledge) catalog for all the Coronal Holes present on the 
solar disk.

The time range queried starts from 4 hr before the estimated CME launch time to the CME launch time (consid-
ering the error).

As a consequence, we associate the event with fast (slow) solar wind if the CME source coordinates are close to 
(far from) any Coronal Hole retrieved by the query.

Data Availability Statement
The ICME catalog built for the analysis in Section 3, together with a tool for the data visualization and the module 
employed for running the PDBM simulations, can be downloaded from https://doi.org/10.5281/zenodo.5818470 
(Napoletano et al., 2021).
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